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I. INTRODUCTION 

The concept of a non-trivial stationary optimal stock (SOS) plays a cen- 
tral role in the theory of optimal intertemporal allocation and its existence 
in a multi-sector model has been shown by Sutherland [14], Hansen and 
Koopmans [6], Peleg and Ryder [12], Cass and Shell [2], McKenzie 
[S, 93, Flynn [S], among others. 

The demonstration of existence typically consists of three separate steps. 
First, a fixed point argument is used to show the existence of what we call 
in the sequel, a discounted golden-rule stock. Second, a separation 
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argument in the form of the Kuhn-Tucker theorem is used to provide a 
“price-support” to the discounted golden-rule stock. Finally, a computation 
based on the price support property is used to show that the discounted 
golden-rule stock is optimal among all programs starting from that stock. 

This is the approach of Cass and Shell [2], McKenzie [8,9] and Flynn 
[5]. Peleg and Ryder [ 121 also rely on the Kakutani and Kuhn-Tucker 
theorems though they combine the first two steps and differ in terms of the 
details of the third. An exception to this is the work of Sutherland [14] 
who relies on methods of dynamic programming and is able to avoid sup- 
porting prices and the Kuhn-Tucker theorem. However, Sutherland does 
not establish the existence of a rzowrriviul SOS, and as noted by Peleg and 
Ryder [ 121, the null stock is always a SOS in a set-up which allows for the 
possibility of inaction and the impossibility of getting positive outputs from 
zero inputs. 

The prevalence of duality methods for the existence results is rather 
striking. In proposing a “primal” approach to “turnpike theory,” McKenzie 
[9] remarks, “The use of duality in establishing the existence of an optimal 
stationary path seems harder to avoid than in proving asymptotic 
theorems.” 

In this note, we propose a purely primal approach to the existence of a 
non-trivial SOS. Our proof avoids the Kuhn-Tucker theorem and by a 
simple computation based on Jensen’s inequality, we can directly establish 
that a discounted golden-rule stock is a non-trivial SOS. The application of 
Jensen’s inequality is, of course, not new and is implicit in Brock [l] and 
more recently, explicitly used in Dechert and Nishimura [4]. However, its 
relevance to the existence problem studied here seems to have been 
overlooked. 

A direct payoff of our approach is that in dispensing with the 
KuhnTucker theorem we no longer need Slater’s constraint qualification 
in the form of the &productivity assumption, i.e., the existence of a feasible 
input-output pair (s, y) such that 6.1, is greater in ull coordinates than X, 
where 6 is the discount factor. In the context of Flynn’s work [S], our 
result shows that the &productivity assumption can simply be dropped 
from his theorem. The comparison with McKenzie’s work is less clear since 
he does not show the existence of a non-trivial SOS (in our sense) for his 
model (see Example 3 and Remark 2 below). Moreover, in assuming that 
the technology set is not necessarily closed, he makes use of the 6-produc- 
tivity assumption even for the fixed point argument. We do, however, 
present an example in which &productivity is violated but a non-trivial 
SOS exists (see Example 2). 

Our result also generalizes the Flynn-McKenzie theorem by replacing 
the continuity hypothesis on the utility function by upper semicontinuity. 
Such an extension is motivated by a class of economies considered by Peleg 
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in which the utility functions are not continuous but only upper semicon- 
tinuous; see Peleg [ 10, Remark 21. 

A secondary contribution of this note is to use a purely primal approach 
to show that a non-trivial SOS, k-, is a discounted golden-rule stock, 
provided (/c, k) is in the interior of the technology set. This result is proved 
by McKenzie [S] relying on duality methods. Again, the proof involves 
three steps. First, a sequence of prices is found to support the stationary 
optimal program, following the approach of Weitzman [ 151, or Peleg and 
Ryder [ 1 I]. Second, by an argument due to Sutherland [ 131, a “quasi- 
stationary*’ price support (i.e., P(Z) = 6’~ for t 3 0) is obtained from the 
above sequence of supporting prices. Third, this (quasi-stationary) price 
support property is used to show that the SOS is a discounted golden-rule 
stock. In dispensing with support prices, we provide a direct and short 
proof. We also present an example to show that the result fails when (li, li) 
is not in the interior of the technology set (see Example 1). 

2. PRELIMINARIES 

2a. Notatiorl 

We shall be working in n-dimensional Euclidean space R”, where 11.~11 
denotes the Euclidean norm of any element s in R”. For any X, y in R”, we 
shall write s $ J’ (X 3 ~1) to denote X, > J’, (.u, 3 JY,) for all coordinates 
i = l,..., n; and s > 1’ to denote s 3 1’ and x # 1%. Let R’i be the non-negative 
orthant of R”, i.e., R’; = (XE R”: .~~a 0). For any set, S, ‘$3 (S) denotes the 
set of all subsets of S and hence we shall write (p: X-+ $J( Y) for any 
correspondence (set-valued map) 4 with domain X and range +J3( Y). 
Finally, let c denote an element of R’; , all of whose coordinates are unity. 

2b. The MO&~ 

An t~~orzo/~z~ Q consists of a triple (2, u, 6) where ? E $3 (R’; x R’: ) is the 
technology, II is a utility function with domain ‘1 and range R, and 6 a dis- 
count factor such that 0 < S < 1. We shall need the following assumptions 
on C%: 

Al. (i) (0,0)~2; (ii) (0, J)EZ implies y=O. 

A2. Z is (i) closed and (ii) convex. 

A3. There is /II such that II.x/I > b for any (x, ~3) E ‘I implies 11~11 < I/X//. 

A4. (x, JJ) E 2 implies (z, n,) E ‘1 for all ,- > s and 0 < 11’ < )a. 
Moreover, I((:, M‘) 3 U(X, 1~). 

A5. II is (i) upper semicontinuous [(.V, ~9”) + (x, y) imply 
lim sup,, _ % ZI(.Y” , J)“) d U(X, JS)] and (ii) concave. 
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Except for A5 (i), these assumptions are all standard. It may be worth 
pointing out, however, that McKenzie [9] does not assume Al, the upper 
semicontinuity of u and the closedness of 2. Instead, he assumes a closed- 
ness condition on u and a boundedness assumption on 2; see I and II in 
McKenzie [9, p. 1961. 

We now state the following basic concepts for our economy @: 

D.l A program starting from an initial vector FE R’; is a sequence 
{k(t)},” such that k(O)=kand (k(r), k(r+ l))~? for all t=O, 1, 2,.... 

D.2 A program {k(r)}:, starting from i?~ R’; is said to be an 
optimal program if for any other program {k’(t)}; starting from k, we have 
CFzo G’u(k(t), k(t+ l))>c;“=O G’u(k’(t), k’(r+ 1)). 

D.3 An optimal program {k( t)).FzO starting from EE R’; is said to be 
a stationar.v optimal program if k(t) = k for all t. 

D.4 A stationary optimal stock k is an element of R’\ such that {k}< 
is a stationary optimal program. It is said to be non-trivial if u(k, k) > 

40, 0). 

D.5 A discounted golden-rule stock k is an element’ of R’; such that 

(i) (k, k)ET 

(ii) u(k,k)>U(Sy,,v)forall (.u,y)~Zsuch that.u<(l-6)k+64 
(iii) u(k, k) > ~(0, 0). 

2c. Edxistence of Optimal Programs and the Principle of Optimalit? 

Our first result is on the existence of an optimal program. The proof, 
being fairly standard, is omitted. 

THEOREM 1. Under Al, A3, and A4, j br anll program {k(t)};- starting 

from E, we have 11 k(t) 11 < max [/I, Ilk11 ] = B(k) for all t, Mlhere a is taken 
from A3. Under the additional assumption A5 (i), there exists an optimal 
program starting from any given initial vector I?. 

Under the assumptions of Theorem 1, there is an optimal program 
{k*(t)},” from each k E R’f, . We define V(k)=C;r=, G’u(k*(t), k*(t+ 1)); P’ 
is generally known as the value function. The following result is standard 
and is known as the “principle of optimality.” 

LEMMA 1. If {k(t)},” . IS an optimal program from k, then 

V(k)= i G’u(k(t), k(t+ 1))+6”‘+‘V(k(N+ 1)) for N>,O. 
I=0 
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3. EQUIVALENCE OF DISCOUNTED GOLDEN-RULE AND 
NON-TRIVIAL STATIONARY OPTIMAL STOCKS 

The equivalence of a discounted golden-rule stock and a non-trivial SOS 
is given in McKenzie [S, p, 421. Our treatment is primal in that it makes 
no use of supporting prices. 

THEOREM 2. Under Al-A5, every discounted golden-rule stock k is a 
non-trivial stationar.v optimal stock. 

Proof. The fact that u(k, k) > ~(0, 0) is true by hypothesis. Now let 
{k(t)},” be any program starting from k. We shall show that it does not 
give a higher utility than the path (k},“. 

Let s(T)=CT:d (1 -6) S’k(t)/(l -8’) and y(T)=C:=: (1 -6) 
6’k( t + 1 )/( 1 - 8’). Given convexity of 2, certainly (x(T), y(T)) E 2 for all 
T3 1. From Theorem 1, we know that k(t) is bounded independently of t. 
Hence (X, j) = Lim., ,X (X(T), y(T)) is well defined and by virtue of A2(i), 
is an element of 2. 

Now, by A5 and the fact that 0 < 6 < 1, Jensen’s inequality yields 
u(.U, j)>,C,YO .(l -6) 6’u(k(t), k(t+ 1)). But (.U-6?‘)=(1 -S)[x,?,, 
#k(t)-C,?, 6 I+ ‘k( t + 1 )] = ( 1 - 6) k. Since (k, k) is a discounted golden- 
rule stock, certainly u(k, k) > u(.U, j), which implies CyCI’=, 6’u(k, k) > CF=, 
iYu(1, J)= ~(2, j)/( 1 -S)>C,Y,, G’u(k(t), k(t + 1)). 

We can now state a converse to Theorem 2. 

THEOREM 3. Under Al(i), AZ(ii), A4, and AS(ii), every non-trivial 
stationary optimal stock k such that (k, k) E interior 2, is a discounted 
golden-rule stock. 

Prooj: Suppose not; then there exists (x. .Y) E 2 such that x d (1 - 6) 
k + 6y and u(.u, y) > u(k, k). Since u is non-decreasing in the first com- 
ponent by virtue of A4, we can assume without any loss of generality that 
x = (1 - 6) k + 6~. Let y = u(x, y) - u(k, k) > 0. 

Using (x, ,I)), we shall now construct a program {k(r)),” starting from k 
that gives more utility than the stationary optimal program {k}; . This fur- 
nishes us the required contradiction. Towards this end, for a value of N to 
be determined later, let 

t=(q), 44 - 1 )I = (1 - hy)(k, k) + Wx, ~1, q = l,..., N. (1) 

By A2 (ii), (z(q), z(q- 1)) ~2 for all q= l,..., N. Now let {k(t))? be such 
that k(O)=k; k(t)=z(N-t+ l), t= l,..., N; k(N+ 1)=,-(0)=x; k(t)=O, 
t3N+2. 

We can show that for large enough N, {k(t))-,” is a program (in the 
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sense of 0.1). For this, it only remains to show that (k, k( 1)) = 
(k, ~(N))E 2. But (k, k)~interior 2 and so there exists c( > 0 such 
that (k, y)~? for all YES? = (.v: k-2ae< ye k+2ae}. Let S, = 

cw d y ,< k + ae}. On substituting the value of x in (I), it is clear 

z(q)-&(q- I)=(1 -6)k which implies (z(q) - k) = S(z(q - 1) ~ k). 

Since 6 is less than 1, certainly z(q) --+ k as q --f co and hence there exists N, 
such that z(N) E S, for all N 3 N,. 

Next, we can assert, as a consequence of A5 (ii) that, for all q = l,...N, 

q;(q), z(q - 1)) 3 (1 - 8’) u(k, k) + Pu(x, .v) 3 u(k, k) + 6“~. 

By Mangasarian (7, p. 63), it is also true that 

llu(k,,-(N))-u(k, k)ll <All=(N)-kll =AfiN+‘lIy-kll, 

where A = (u(k, k) + fl)/cc, j= -Min, t ,+, u(k, J’) and W is the set of 2n ver- 
tices of S, . Hence we have 

Nfl 

c G’[u(k(t),k(t+l))-u(k,k)]a -AdN+‘II~-kll+(N+l)GN+‘y. 
/=O 

On adding terms after the time period (N + 1 ), we obtain, with V as in 
Lemma 1, 

f G’[u(k(t), k(t + 1)) - u(k, k)] 
I=0 

36 N+‘((N+ l)y-A//y-k11 + (&(O,O)/(l -d)J-&V(k)). (2) 

Let N, be a value of N such that the right-hand side of (2) is positive. 
Let N’ = Max(N,, NJ. Now any {k(t)}: with N> N’ furnishes us with a 
contradiction to the fact that {k},‘- is a stationary optimal program. Since 
k is a non-trivial stationary program, u(k, k) > ~(0, 0) and the proof is 
finished. 

Remark 1. The proof is valid if instead of the convexity of Z and the 
concavity of u over 2, we assume only that 2,= {(s, J)): x = (1 - 6) 
k + 6yj is convex and that u is concave over 2,. 

A natural question arises as to whether the interiority hypothesis in 
Theorem 3 can be dispensed with. The following example shows this not to 
be the case. 

EXAMPLE 1. Let % = {(x, y) E Rc x R: : Avdx, ey,< 3}, where 
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A=(’ 0 1 ,,2). Let 6 = + and u(x, y) = ex. It is clear that this economy satisfies 
Al-A5 We shall show that k = (1,O) is a non-trivial stationary optimal 
stock. It is non-trivial because u(k, k) = ek = 1 > ~(0, 0) = 0. To show that it 
is stationary optimal stock, observe that (k, k) E 2 and consider any 
program {k(t)}r startingfromk.Since(k(t),k(t+l))E%,k(t)<(l,O)for 
all t. Hence 

f G’u(k(t), k(t+ l))= f G’(ek(t))< f 6’ 
I=0 I=0 f=O 

X’ 

= c 6’(ek)= f 6’u(k, k). 
t=O I=0 

Now let x’= (1, 1 ), y’ = (1, 2). Certainly (x’, ~1’) E 2 and 6y’- x’ = 
(6 - 1) k. But u(x’, y’) = ex’ = 2 > ek = u(k, k) and thus k is not a discoun- 
ted golden-rule stock. 

4. EXISTENCE OF DISCOUNTED GOLDEN-RULE AND 
NON-TRIVIAL STATIONARY OPTIMAL STOCKS 

We now turn to the existence issue with Theorem 2 in McKenzie [9, 
p. 1991 as the relevant benchmark. We shall need the following definition 
for our next result. 

D.6 An economy is &normal if there exists (z, j) E 2 such that X < Sj 
and u(S, y) > ~(0, 0). 

THEOREM 4. Zf @ satisfies Al-A5 and is h-normal, there exists a discoun- 
ted golden-rule stock. 

The proof of Theorem 4 relies heavily on the following result. 

LEMMA 2. Let S= {XE R”, : /Ix11 6,9) and C$ and q be mappings from S 
fnto $(R’: x R:) such thatfor ZES, b(z)= ((x, y)~il: x<(l -6) z+d-vy’i 
and $(:I = { (.v, .v) Ed: u(x, y) 3 u(x’, y’) .for all (2, y’) E d(z)}. If 6 
satisfies A I-A5, Ic/ is a non-emptv, convex-valued, and upper semicontinuous 
corrc.spor2dence. 

Proof: Clearly, S is a non-empty, convex, and compact set. Next, we 
claim that 4 is a non-empty, convex and compact-valued correspondence. 
For any ZE S, (0, O)E~~(Z), and, since i3 is convex and closed, d(z) is con- 
vex and closed. Furthermore, if (x, y) E+(Z), then llxll < fi. (Otherwise, if 
II-XII BP, then by A3, Ilxll < (1 -6)llzll +Sllyll < (1 -6)(lz/l +Sllxll, so llxll G 
lIzI/ d /?, a contradiction.) This implies by Theorem 1 that if (x, y) E d(z), 
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then llyll </I. Thus on defining S’= ((x, ~)ER”, x R”,: /x/l <fi, llyll </?I, 
we note that S’ is a non-empty, compact set, and for any z E S, d(z) is a 
subset of S’. Since d(z) is closed for each z E S, d(z) is compact for each 
- E s. L 

Since u is an upper semicontinuous function on 2, and 4(z) is a non- 
empty, compact subset of 2, +(z) is non-empty for each ZE S. It is also 
convex as a consequence of A5 (ii) and of the convexity of d(z). 

Next, we show the upper semicontinuity of $. Let z* be an arbitrary 
point of S. Consider a sequence zn E S, with Z” + z* as n + co. Let 
w, Y”) E VW”), and (xn, y”) + (2, j). We want to show that 
(a, ~)E$(z*). Since 2 is closed, (a, P)E~(z*). Suppose ($ .G)$$(;*). 
Then there is some (x*, y*)~ $(z*) and an E>O such that 
u(x*, y’) 2 u(i, p) + E. 

Now, since u is an upper semicontinuous function, lim,, ,X sup 
n(xn, y”)<u(..?, j). Thus, there is N, such that for n bN,, u(x”, y”)< 
u($ ,‘) + s/3. Consequently, for n 3 N, , 

u(x*, y*) 3 u(x”, y”) + 2&/3. (3) 

Choose 0 < 1< 1 such that (1 - A)[u(O, 0) - u(x*, y*)] 3 -43. We 
claim that there is an N, such that for n 3 N,, (Ix*, A~*)E&z”). To see 
this, observe that (0,O) E 2 and convexity of 2 imply that (1x*, 1y*) E 
$(nz*). Since z” + z*, there is N, such that for n > N,, z” > AZ*. Thus 
61y* -,4x* > (6 - 1) ilz* > (6 - 1) z”, establishing our claim. 

Since (xn, y”) E I/(z”), for n 2 N,, 

24(x”, y”) 2 u(hx*, lJJ*) > h(x*, y*) + (1 - 1) u(0, 0) 

= 24(x*, y*) + (1 - ;1)[u(O, 0) - 4x*, y*)l 

3 24(x*, y*) -E/3. 

Using this in (3) for n > Max( N,, N2), 

u(x*, y*) 2 u(xn, y”) + 2&/3 >, u(x*, y*) + e/3, 

which leads to a contradiction and completes the proof. 

Proof of Theorem 4. Define Q: S + ‘p(R’!+ ), where for z E S, Q(Z) = 
{xER”,: (x, ykICI(z)}. W e will show that this correspondence Q satisfies 
all the requirements of Kakutani’s fixed-point theorem (Debreu [3, p. 263). 

Lemma 2 implies that Q is a non-empty, convex-valued correspondence. 
It also implies that Q is upper semicontinuous. To see this, take an 
arbitrary z* EX. Let zne S, with z” + z* as n + co. Let xne Q(z”), and 
xn + X! as n -+ co. We have to show that 2 E Q(z*). Since x” E Q(z”), there is 
y” such that (xn, y”)~ $(z”). This means (x”, y”) E #(z”), and by com- 
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pactness of S’, we can pick a subsequence (x”‘, .v”‘) tending to (a, J;) E S’. 
By the lemma, (i-, j) E $(z*) and the claim is proved. 

Thus, all the conditions of Kakutani’s fixed point theorem are fulfilled, 
and there exists .x0 E Q(.x’). This means there is some y” such that (.x0, y”) E 
$(x0), i.e., 

u(xO, yO) 3 4% y) for all (x, .v) E &x”). 

But (x0, Y’)E &x”) implies x0< y”, and we obtain from A4 that 
(x’, x0) E 2, and u(x”, x0) >, u(.uO, y”) > U(X, y) for all (x, y) E 2, with 
6~ - s > 6.~’ - .Y*. Given b-normality, there is (.u’, y’) E 4(x0) such that 
u(x’, ~1’) > ~(0, 0). Thus u(x”, .u”) > ~(0, 0), and hence x0 is a discounted 
golden-rule stock. We can now state the principal result of this paper. 

THEOREM 5. If 05 satisfies Al&A5 and is b-normal, there e.Csts a non- 
trivial stationary optimal stock. 

Prooj: The proof is a simple consequence of Theorems 4 and 2. 
Flynn [S] establishes a version of Theorem 5 under the additional 

assumption of &productivity. A natural question arises as to whether our 
generalization is non-vacuous, i.e., there exist economies satisfying the 
hypotheses of Theorem 5 (and Theorem 4), whose technologies are not 6- 
productive and for which there exists a non-trivial SOS. That this is indeed 
so can be seen by the following example. 

EXAMPLE 2. Let f(.~) = 2.x for 0 <x d 1 and f(.~) = 2 + (x - 1)/2 for 
x3 1. Let 2= {(x, J’)E R” + : 0 d 4’ <,f(x)l, U(S, y) = 2j’(x) - J’ and 6 = i. CF 
satisfies A3 with fi = 3 and it is easy to check that the economy Q also 
satisfies the remaining assumptions Al, A2, A4, and A5. 

Now (-U, p)=(l,2)~Z. Certainly ST-X=0 and u(S, 7)=2>u(O,O). 
Hence 6 is &normal. Also, for any (.u, y) E 5, 6~ - .Y < ~J‘(,Y) - .X d 0, since 
for x 3 1, f(~) 6 2x. Thus, there cannot exist any (x, y) E ? such that x @ SJ 
and T is not b-productive. 

Next, we claim that .Y* = I is a discounted golden-rule stock. Pick any 
(.K, ~)E’X such that .x< (1 -b) X* + 6~. Then ~13 2s- 1 and u(.Y, ~7) < 
Jf’(x) ~ 2s + 1. Now 

and 

u(x, J’)62(2X-2x+ 163 for 0 <x< 1 

u(x. y)d2(2+f(s- I))-2x+ 1 <3 for x3 I. 

In either case, U(X, v) < u( 1, 1) and our claim is proved. 
It should be noted that X* = 1 is also a non-trivial SOS by Theorem 2. 
Finally, we present an example of an economy which satisfies all the 
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assumptions of Theorem 2 of McKenzie [9], but which has only a trivial 
SOS. 

EXAMPLE 3. Let 2= {(x, y)eR:: O<-Y<~X’/~}, c?=+, and u(x, JJ)= 
X-2~. For (a, 3) = (a, 1)~2, we have Sj9.C Note that our economy 
satisfies Al-A4 and I and II of McKenzie [IS, pp. 1961981. For any 
program {k } 2 with 0 <k 6 4, C,“=, 6’u(k, k) < 0 and is dominated by the 
program {k(f)),” with k(0) = k and k(t) = 0, t = 1, 2 ,... . Since there is no 
stationary program {k},” with k > 4, (0); is the unique stationary optimal 
program. 

Remark 2. It is worth pointing out that McKenzie defines a non-trivial 
SOS only for S-productive technologies and as one which is a local 
turnpike. In this sense, (0) in Example 3 is non-trivial because the 
technology is &productive and (0) is a global turnpike. 
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